Entropic lattice Boltzmann simulation of three-dimensional binary gas mixture flow in packed beds using graphics processors

نویسندگان

  • Mohammad Amin Safi
  • Mahmud Ashrafizaadeh
چکیده

The lattice Boltzmann method is employed for simulating the binary flow of Oxygen/Nitrogen mixture passing through a highly dense bed of spherical particles. Simulations are performed based on the latest proposed entropic lattice Boltzmann model for multi-component flows, using the D3Q27 lattice stencil. The curved solid boundary of the particles is accurately treated via a linear interpolation. To lower the total computational cost and time of the simulations, implementation on Graphics Processing Units (GPU) is also presented. Since the workload associated with each iteration is relatively higher than that of conventional 3D LBM simulations, special emphasis is paid in order to obtain the best computational performance on GPUs. Performance gains of one order of magnitude over optimized multi-core CPUs are achieved for the complex flow of interest on Fermi generation GPUs. Moreover, the numerical results for a three-dimensional benchmark flow show excellent agreements with the available analytical data.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical Simulation of Heat Transfer in Packed Beds by Two Population Thermal Lattice Boltzmann Method

The Lattice Boltzmann Method (LBM) was used for simulation of a gas flow and conjugate heat transfer in fixed packed beds with solid particles inside. D2Q9 version of the Factorized Central Moment (FCMLBM) is used for a gas flow computation. Heating transfer in the bed is described by second distribution function set and multiple relaxation time lattice Boltzmann method (DDF MRT LBM) is used. N...

متن کامل

Numerical simulation of a three-layered radiant porous heat exchanger including lattice Boltzmann simulation of fluid flow

This paper deals with the hydrodynamic and thermal analysis of a new type of porous heat exchanger (PHE). This system operates based on energy conversion between gas enthalpy and thermal radiation. The proposed PHE has one high temperature (HT) and two heat recovery (HR1 and HR2) sections. In HT section, the enthalpy of flowing high temperature gas flow that is converted to thermal radiation em...

متن کامل

Implementation of D3Q19 Lattice Boltzmann Method with a Curved Wall Boundary Condition for Simulation of Practical Flow Problems

In this paper, implementation of an extended form of a no-slip wall boundary condition is presented for the three-dimensional (3-D) lattice Boltzmann method (LBM) for solving the incompressible fluid flows with complex geometries. The boundary condition is based on the off-lattice scheme with a polynomial interpolation which is used to reconstruct the curved or irregular wall boundary on the ne...

متن کامل

Development of a novel method in TRMC for a Binary Gas Flow Inside a Rotating Cylinder

A new approach to calculate the axially symmetric binary gas flow is proposed Dalton’s law for partial pressures contributed by each species of a binary gas mixture (argon and helium) is incorporated into numerical simulation of rarefied axially symmetric flow inside a rotating cylinder using the time relaxed Monte-Carlo (TRMC) scheme and the direct simulation Monte-Carlo (DSMC) method. The res...

متن کامل

CFD Simulation of Parameters Affecting Hydrodynamics of Packed Beds: Effects of Particle Shape, Bed Size, and Bed Length

Packed bed reactors have many applications in different industries such as chemical, petrochemical, and refinery industries. In this work, the effects of some parameters such as the shape and size of particles, bed size, and bed length on the hydrodynamics of the packed beds containing three spherical, cylindrical, and cubic particles types are investigated using CFD. The effect of the combinat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IJCSE

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2016